
 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

192

June
2014

Reliable Real-Time Applications on Android OS

Ganesh jairam rajguru

Abstract –

The Android operating system (OS) is widely used within several types of embedded &

mobile platforms, including mobile phones and tablets, and the industry is exploring the

ability of Android within other embedded platforms, i.e., automotive or military, that

require real-time guarantees and the ability to meet deadlines as a pre-requisite for reliable

operation. In this paper, we present preliminary conclusions on Android’s real-time

behaviour based on experimental measurements performed on a commercially available

Android platform.

Index Terms – Android OS, Real-time Software, OMAP

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

193

June
2014

I. INTRODUCTION

Traditional studies on the reliability of software focus on functional failures, and do not

emphasize the time-related behaviour of systems that can also cause the software to fail. The

ability to meet deadlines and time constraints is critical to embedded systems software (as in

automotive or robotic applications) that mandate response to stimuli within prespecified real-

time design specifications, and reliability considerations require a detailed evaluation of the

ability of the system to meet these specifications [1-3]. The Android OS

is an operating system primarily designed for mobile platforms by Google. It is an open source

OS based on LINUX kernel (version 2.6) that enables developers to write applications primarily

in Java with support for C/C++ as well [4]. Android is finding widespread acceptance in the

mobile and portable computing market, and this study examines, for the first time, its

performance & reliability in more demanding embedded real-time applications.

A. Android Architecture

An Android system is a stack of software components. At the bottom of the stack is

Linux (kernel version 2.6). This provides basic system functionality like process and memory

management and security. Also, the kernel handles all the things such as network interface and a

vast array of device drivers, which make it easy to interface to peripheral hardware. On top of

Linux is a set of libraries, including bionic (the Google libc), media support for audio and video,

graphics (OpenGL ES), support for browsers (Webkit), and a lightweight database, SQLite [4].

A key component of an Android system is the runtime engine – the Dalvik Virtual

Machine (VM). It was designed specifically for Android and is optimized in two ways. It is

designed to be instantiated multiple times – each application has its own private copy running in

a Linux process. The Dalvik VM makes full use of Linux for memory management and multi-

threading, which is intrinsic in the Java language. The Application Framework provides many

higher-level services to applications in the form of Java classes. This will vary in its facilities

from one implementation to another.

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

194

June
2014

B. Android OS in Real-Time Embedded Applications: We use the automotive application as an

example of the type of reliable embedded software applications that are being investigated in the

context of the use of Android. In the typical automotive application, there are different services

(Control Class: drive control, braking; Safety Class: seatbelts, airbags; Infotainment Class:

multimedia, climate control, communication services, etc.), that usually provide their own user

interfaces. This might overwhelm and distract the typical driver restricting the user from

exploiting the full capabilities of these devices. With all these features bundled together on a

single platform, the unpredictability in response time of these simultaneously executing and

interacting applications may cause the software to fail, resulting in unreliable operation. For

instance, if the driver were using his GPS navigation while driving, and a higher priority phone

call is received causing the GPS application to be de-scheduled for a long time, the GPS

application might miss out on updating the driver on some turn that he should have taken, or if

the time to respond to a phone call were too long, the call would be missed. Additional safety

considerations come into play if the navigation system or the braking systems were also

Controlled by the Android OS, in the near future.

C. Experimental Setup:

 We have chosen Texas Instruments' “Zoom II Mobile Development Kit”, featuring TI's

OMAP 3430 processor as the experimental platform [5]. The OMAP 3430 has an ARM core,

which is the most popular core for low power, hand-held general purpose micro-controllers.

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

195

June
2014

Texas Instruments’ OMAP Zoom II Platform

The source code for Android including its kernel can be obtained from a repository available at:

git://git.omapzoom.org/platform/omapmanifest.git

A detailed guide on how to build and install Android on Zoom's OMAP platforms is available at

http://omappedia.org/wiki/Android_Getting_Startd

D. Experiment and the Test Procedure:

The real-time responsiveness or latency measurement on Android is broken down in two

parts. The first part is the latency introduced in handling of an interrupt within the Linux kernel

i.e., the time it takes for the Linux kernel, after receiving an interrupt (timer interrupt in our

experiment), to propagate this event to the event management layer in the kernel. The second

part is the latency introduced by Dalvik VM, i.e., the time difference between when it receives

the event from the kernel event management layer and passes it up to the Application running on

top of the VM.

 Another factor that has to be taken into account for deciding whether the system is

reliable for real-time use, in addition to the latency incurred in handling of external events, is the

“variation” in this latency i.e., for a system to be deemed reliable for real-time application, there

has to be an upper bound on how much variation in the latency can be tolerated by the real-time

application. We have analysed our experimental measurements with these criteria in mind.

Instrumentation of Android System:

This experiment involves system level latency measurements i.e., the delays introduced

by the Linux kernel and the Dalvik virtual machine combined, in propagating the event (timer)

up to the Java application running on top of Android. To achieve this purpose, two separate

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

196

June
2014

applications, Test and Loading, were developed on the Android Zoom II MDK. The Test

application’s task was to schedule a Timer Task which would run after the expiry of fixed timer

interval (i.e., 10ms or 1ms in this experiment) and observe the error (slippage in deadline) by

noting the time difference between when the task was scheduled from the Java application, and

when the actual timer events were received. The application stores this slippage values onto a file

which was read back for later analysis.

The Loading application’s task was to exercise the CPU and other I/O resources on the

system so that measurements could be taken under varying loads.

The Loading application schedules another TimerTask with a varying timer interval (10

ms for normal load and 1 ms for heavy load). In the timer event handler function, various

dummy floating points operations are performed, some System APIs are called (for reading the

time values), simulating an Android system under load, and the some values are written back

onto a file thereby exercising all aspects of the system.

The Test application uses Java’s High Precision Timer APIs to read in the current time,

which gives the timer accuracy in nano seconds. The test application itself may be scheduled at

100ms or 1ms intervals. The Test application was tested in three scenarios:

(1) Test application alone, or “no load”

(2) Test application with Loading application with 10ms timer scheduler interval simulating

“normal load”

(3) Test application with Loading application with 1ms timer scheduler interval, simulating

“heavy load”. The Test application itself was run with a)100 ms timer interval, and,

b)1 ms timer interval.

II. EXPERIMENTAL RESULTS

In all the observations (plots) shown below, the X-axis shows the reading number (timer event

number) and Y-axis shows the corresponding slippage in nanoseconds (ns).

A. Experiments with a 100 ms Test Application Timer:

 In the experiments with the 100ms timer, the Test application was executed under no load,

normal load and heavy load conditions. For the plots presented here, the x-axis represents the

timer event number, while the y-axis, in units of ns, represents the error or “slippage”. A larger

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

197

June
2014

slippage indicates a larger latency in responding to an interrupt, so a real-time application would

be deemed less reliable in meeting its deadlines.

1. Behaviour under No Load : The Test application was run alone on the Zoom II platform and

the timer latency observations were plotted from the readings recorded by the application as

shown below.

Fig. 2: Test Application under No Load.

In the no load condition, the OS background task tries to program the system in Low Power

Mode to conserve energy, therefore, when an interrupt occurs, the entire system has to come

back up and manage that event. Although there are some instances of higher delays (60 – 100

ms), much of the error is below 10 ms range.

2. Behaviour under Normal Load: The Test application was run along with the Loading

application with 10ms timer scheduled period on Zoom II platform and the timer latency

observations were plotted from the readings recorded by the application as shown.

Fig. 3: Test Application under Normal Load.

Under normal system load, the system behaves ideally for hosting real time applications, as it

may be seen from the plot that there are very few occurrences of deadline slippage, and most of

them are contained within nearly 5ms interval. The reason for that could be attributed to the

fact that;

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

198

June
2014

 (i) System does not go into sleep mode as there are processes using the system resources for

carrying out certain tasks and keeping the system up; and (ii) The system resources are not under

severe contention, where one process using a resource may block up another process or cause an

event to be noticed after a delay. Most of the slippage errors here are contained within the 5ms

window, except for some very rare cases of high error, e.g., higher than 100ms, implying that the

events

might have been dropped altogether, leading to failures.

3. Behaviour under Heavy Load: The Test application was run along with the Loading

application with 1ms timer scheduled period to exert a heavy processing and I/O load

on the system and the timer latency observations were plotted from the readings recorded by the

application as shown.

Fig. 4: Test application under Heavy Load

As it can be seen from the plot, there is a small but constant slippage of deadline in invocation of

the application level timer event handler. Most of the error is contained within 1ms of the actual

event time. This again can be attributed to the fact that system does not go into sleep mode.

Furthermore, the high contention for system resources because of the Loading task running with

a 1ms timed schedule in which it exercises the system for CPU and I/O usage, task scheduler has

to de schedule the currently running task almost every time to invoke the Test application’s timer

event handler, there is almost always a small but persistent slippage in the actual time at which

the handler is invoked.

B. Experiments with a 1 ms Test Application Timer

The same experiment was repeated with the Test application event generation being programmed

to occur after every 1 ms. Also, the application was modified to store all the observations in a

buffer and write the entire buffer onto a file after the experiment was finished. This was done so

that application's “file write” might not block it from receiving the timer event in time, as that

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

199

June
2014

would amount to application's incapability to receive the event at the right time rather than delay

being caused by the OS in propagating the event to the application.

1. Behavior under No Load : The Test application was run alone on the Zoom II Android

Platform and the timer latency observations were plotted from the readings recorded by the

application as shown below.

Fig. 5 – Test Application under Light Load, showing slippage propagation and accumulation

As it can be seen here, the deadline miss in this case is around 35ms for the cases when there is

considerable deadline miss. It is also evident from the graph that the deadline slippage becomes

more apparent during the later stages of the experiment as the previous delays keep

accumulating, i.e, for every event that is received after some delay, the events after that also

show up that delay and add to it – we call this slippage propagation and accumulation.

2. Behavior under Normal Load: The Test application was run along with the Loading

application with 10ms timer scheduled interval and the timer latency observations were plotted

from the readings recorded by the application as shown.

Fig. 6 – Application under Normal Load, with increasing slippage accumulation.

The above plot is consistent with the plot obtained for latency under no load except for the fact

that deadline slippage in this case is almost always over 42 ms for the cases where there is a

considerable deadline miss.

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

200

June
2014

3. Behavior under Heavy Load: The Test application was run along with the Loading

application with 1ms timer scheduled period to exert a heavy processing and I/O load on the

system and the timer latency observations were plotted from the readings recorded by the

application as shown.

Fig. 7 – Application under Heavy Load – Increasing Slippage and Slippage Accumulation.

Consistent with our analysis, when the test application itself is putting a heavy load on the

system, i.e., it is very demanding in terms of invocation of frequently occuring events, much of

the CPU time is spend in scheduling the test application and hence, if there is some other

process, which is also heavily loading the system resources running in parallel with the test

application, the system is not able cope with the high frequency of schduling required by the test

application. III. ANALYSIS OF EXPERIMENTS

We are now in a postion to make an analysis of the

Experimental behaviour of Android under varying scenarios (deadlines, load) as described in

Section II.

 A. Frequency of slippages increase with increasing load: In all cases, increasing the load

caused the frequency of slippage to increase. For instance, in Fig. 3, the slippage times occurred

less frequently than in Fig. 4 (under Heavy Load).

B. Increasing frequency of interrupts increased slippage times: As shown in Fig. 4 & 7, when

interrupts are infrequent (Fig. 4), the slippage times were small (i.e., 1ms). However, when the

frequency of interrupts was increased, as in Fig. 7, the slippage times increased to around 80ms.

C. Increasing frequency of interrupts causes slippage accumulation:

As noticed in Fig. 6 & 7, a frequent interrupt caused Android keep accumulating missed

deadlines, and fall further back, with more frequent misses in meeting deadlines, which is

exacerbated by a heavy load.

 IJMIE Volume 4, Issue 6 ISSN: 2249-0558

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

201

June
2014

IV. CONCLUSION

Our experimental results and analyses show that deadline misses of between 1 and 5 ms are

common when the frequency of interrupts is small (e.g., 10Hz). However, when the frequency of

interrupts is increased (e.g., 1Khz), deadline misses or response times in the order of 0.5sec are

observable. Furthermore, the frequency of these misses increases with time through the process

of slippage accumulation, resulting in potentially a slowdown in the operation of the system. If

there are more than a dozen interrupts per second under load, we observe that the Android OS

may not demonstrate reliable behaviour (e.g., response times increase significantly) with respect

to real-time constraints. The addition of a real-time scheduler (e.g., a Rate Monotonic Scheduler)

may increase the reliability of Android, and we are experimenting further along these lines of

research. While Android OS supports pre-emption and multi-tasking, our results indicate that

designers of real-time applications that propose to use Android OS should conduct measurements

of its behaviour carefully to gauge the combined effects of slippage, its frequency and value, and

its accumulation, on the reliability of their system.

REFERENCES

[1] M. R. Lyu, Handbook of Software Reliability Engineering, McGraw Hill

Publishing, 1995, ISBN 0-07-039400-8.

[2] J. Musa, “Operational Profiles in Software-Reliability Engineering, IEEE Software, March

1993.

[3] G. Vo et al, “Building Automotive Software Component with the AutoSAR Environment – A

Case Study,” Proc. 9th International Conference on Quality Software, Jeju, Korea, Aug 24-Aug

25, 2009.

[4] Google Android SDK, http://developer.android.com/sdk/index.html

[5] Texas Instruments’ OMAP Zoom II: http://omapzoom.org.

